TechTalk 88 Amplifier Linearization

(AMPLIFIER LINEARIZATION in a DIGITAL WORLD)

by Mike Collis WA6SVT

(drawings by Bob Miller W6KGE)

Reprinted from Amateur Television Quarterly (ATVQ)

[Our guest author for TechTalk, Mike Collis WA6SVT, is a technical leader with the local ATV organization called Amateur Television Network (ATN) and works in the commercial television industry as a broadcast engineer for CBS. A big thank you to Mike WA6SVT and Bill WB8ELK of ATVQ for allowing the OCARC to reprint this article from the Spring 2010 ATVQ issue.]

This article is a discussion about the current type of amplifiers most hams have used, their shortcomings and ways to improve them.

For years hams have used SSB capable linear amplifiers for ATV with the power backed down. This worked fairly well with AM ATV but not so well with analog VSB or QPSK digital ATV signals. The three primary shortcomings of the amplifiers are:

- 1. gain compression,
- 2. bias and power bypassing and
- 3. intermodulation distortion (IMD).

Bypassing is the easiest to fix; it is done by adding capacitors to both the bias and collector or drain supplies to stiffen them up during sync or peak signal portions of the modulation. Many ham amplifiers did not provide adequate filtering as needed for complex ATV and QPSK waveforms but some manufacturers made modifications to make them ATV compliant. We can improve most amplifiers by using low ESR (low series resistance) rated capacitors to provide a stiffer supply to the active amplifier devices. RFC choke wire size needs to be large enough to reduce voltage drop to provide the stiff DC supply to the active devices.

Amplifier class is also important for both efficiency and distortion levels. Class A is best for low distortion but has very low efficiency and usually not used for high power final amplifiers. Class AB is much more efficient but distortion at the upper end of the power curve is much higher than class A...class AB is the normal choice for final and driver amplifiers.

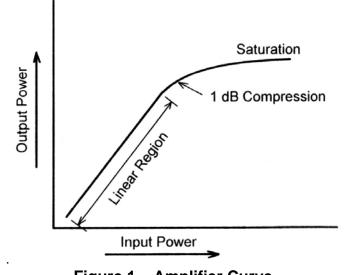
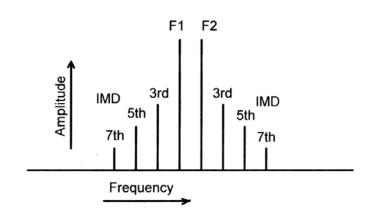
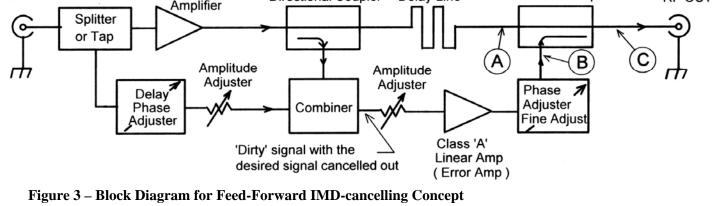
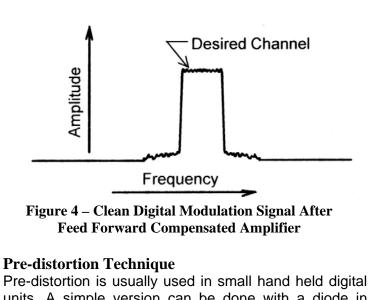



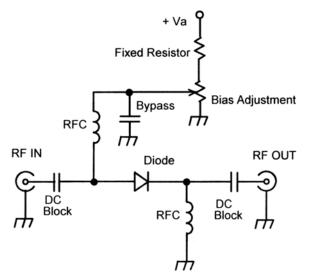
Figure 1 – Amplifier Curve

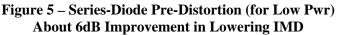
Amplifiers have a gain curve **[Fig 1]** that starts out as linear, then the gain reduces, then saturates as RF drive increases. Amplifier power output is usually rated at both the 1 dB compression point and saturated power output. Most typical ham amplifiers are rated at or near the saturated end of the curve. The 1 dB compression point is usually about 60 to 70% of the saturated output. It is best to not drive an amplifier past the 1 dB compression point during sync time for analog and lower than that for digital.


As the RF drive increases, a change in the junction capacitance and internal resistance will occur. This will cause phase shifting (AM/PM) and compression (AM/AM) these are the primary causes of IMD. Two tone testing is one way to test an amplifier for IMD performance.



The procedure is done with two carriers (F1 and F2) of equal level and a usually a few megahertz separation for testing [see **Fig 2**]. Looking at analog a VSB signal at the output of the power amplifier you see the effect of


(sync in analog ATV) its digital average power is about IMD as drive levels are increased, the lower aural carrier starts regenerating and its level is an indicator 15 watts. of the amplifier's IMD distortion performance. Now that we know the shortcomings, how do we get around them for better analog and robust digital RF amplifiers using 24 volt devices have lower IMD performance? Either pre-distortion or bucking out the responses than 12 volt devices. LDMOS devices distortion [called Feed-Forward] is the answer. usually have lower IMD responses than bipolar ones. Bias will affect the gain curve; increasing bias will **Feed-Forward Technique** extend the linear portion of the curve at the expense Most [commercial] broadcast transmitters use feed of efficiency and heat. Amplifier tuning especially loading has an effect on IMD as well. forward techniques. It is done by dividing the drive signal into two paths [see Fig 3]; the first is through some delay between the splitter and power amplifier Although most of the amplifier distortion outside the input (coax jumper) and the other path through a desired signal channel can be filtered out with an variable phase and amplitude adjuster into a combiner. external filter, the IMD is also present within the The other combiner input samples the power amplifier's desired channel causing visible beat patterns with AM output via a directional coupler. or VSB analog and will cause the constellation pattern to distort, EVM and signal to noise will worsen with digital signals. As the drive is increased, IMD The combiner's output is first tested with a spectrum analyzer and the phase and amplitude adjusters before increases till at some point the signal cannot be the combiner are set so the desired signal is minimized demodulated. so the IMD (dirty) signal remains. The combiners output is then is then connected to a very linear class A (error) ATV operators have for years put up with IMD on AM amplifier to overcome directional coupler and adjuster or VSB analog and some turning up the sync losses. stretcher level and RF drive to allow pushing the amplifier past the 1 dB compression point to get as much power as needed for ATV DX. The now amplified IMD is reapplied 180 degrees out of phase and equal level to the IMD level from the power amplifier using a second set of phase and amplitude We cannot do the same thing with digital and usually amplifiers used for digital ATV have had to be used adjusters to minimize the power amplifier's IMD products by 20 to 30 dB in many good amplifiers [see backed off well below the 1 db compression point, this Fig 4] and at least 15 dB with other less performing is the peak of the signal and digital is measured as amplifiers. DSP processing can be used to make the average power. Average level is 7 to 10 dB below the process more dynamic for different power output levels, peak. An amplifier with a CW power output of 100 watts has its 1 dB compression point about 70 watts temperature and power supply changes. (Combiner) RF IN Power **Directional Coupler Directional Coupler Delay Line** RF OUT Amplifier



The signal with high levels of IMD at (A) is combined with the out of phase "dirty" IMD signal from (B) which cancels the IMD, to produce a desired clean signal with 20 to 30 dB lower IMD at (C)

units. A simple version can be done with a diode in series with the RF path prior to the driver amplifier and is slightly biased and its parameters chosen to compliment the drive levels used [see **Fig 5**]. The bias current is adjustable to allow optimizing the predistortion; this method can give about a 6 dB improvement in lowering IMD.

