2017 JPL DATV Presentation

Current Advances in Digital-ATV

by

Ken Konechy W6HHC

W6HHC@ARRL.net

Robbie Robinson KB6CJZ

KB6CJZ@ARRL.net

The Presentation Authors....

Ken W6HHC

Robbie KB6CJZ

Digital-ATV technology allows Video Quality to exceed analog-ATV

Comparison of analog video and an DATV video using the same antennas with weak sigs

(courtesy of G8GTZ & GB3HV)

Status of Digital-ATV Today

- DATV Video Quality can exceed analog ATV
- Few hams transmit DATV in USA today
- European DATV is very active and growing
- Australia/New Zealand have lots of DATV activity
- In 2017, there are finally 16 DATV-repeaters in USA
- Digital-ATV transmitters had been expensive
- US \$900-and-up for MPEG/DVB-S Encoder/Transmitters

DATV Transmitter was cost barrier for most in USA

Block Diagram of DATV Station

Typical System Block Diagram for DVB-S DATV Station

Different Protocols used for DATV

- DVB-S (satellite based)
- DVB-S2 (satellite for HDTV)
- DVB-T (terrestrial reception)
- ATSC (commercial terrestrial reception in US)
- ITU-T J.83B (US/Canada cable television)

DVB-S Protocol used for DATV

- DVB-S is used for commercial satellite downlinks
- DVB-S was designed for commercial SD-DTV
- Protocol allows only QPSK Digital modulation
- Protocol typically calls for MPEG-2 encoding
- RF bandwidth is variable = 1.33 x Symbol-Rate
- Hams have hacked RF bandwidth down to 0.5 $_{\mbox{\scriptsize MHz}}$
- very widely used by hams

DVB-S2 Protocol used for DATV

- DVB-S2 used for commercial satellite downlinks
- DVB-S2 was designed for commercial HD-DTV
- Protocol allows following digital modulations:
 - QPSK (2-bits/symbol)
 - 8PSK (3-bits/symbol)
 - 16APSK (4-bits/symbol)
 - 32APSK (5-bits/symbol)
- Protocol typically calls for MPEG-4 encoding
- RF bandwidth is variable = 1.2 x Symbol-Rate
- There are licensing issues for ham radio usage

DVB-S2 Protocol – modulation technologies

DVB-T Protocol used for DATV

- DVB-T was designed for commercial SD-DTV
- COFDM protocol allows these digital modulations:
 - QPSK (2-bits/symbol)
 - QAM-16 (4-bits/symbol)
 - QAM-64 (6-bits/symbol)
- RF bandwidth can be 1, 2, 3, 4, 6, 7, or 8 MHz
- increasing usage by hams (repeater downlink)
- Used by Amateur Television Network in LA mountains

DVB-T Protocol used for DATV

COFDM technology allows 1705 sub-carriers (or more)

ATSC Protocol used for DATV

- ATSC is used for US commercial TV reception
- ATSC was designed for commercial HD-DTV
- Protocol allows only one digital modulation:
 - 8-VSB (3-bits/symbol)
- Protocol typically calls for MPEG-2 video encoding and Dolby (AC3) sound encoding
- RF bandwidth fixed at 8 MHz
- Dolby licensing issues for ham radio usage
- no current active ham experiments

RF Exciters for ham DATV

- SR-Systems MiniMod exciter + MPEG-2 encoder
 - DVB-S, DVB-T about \$875 as received in USA
 - DVB-S2 and ATSC costs additional...also H.264 encoder was \$900 additional
- DATV-Express exciter board + PC
 - DVB-S \$300 + shipping
 - DVB-S2 \$300 + shipping
 - DVB-T (experimental 2 MHz bandwidth) \$300 + shipping
- Portsdown Project exciter board + RPi-3
 - DVB-S modulator blank PCB & blank filter PCB US\$21 + parts + soldering + ship
 - DVB-S can use DATV-Express as modulator board \$300 + shipping

RF Exciters for ham DATV – cont'd

- HiDes exciter with MPEG-2 encoder + PC
 - DVB-T model UT100B Tx/Rx about \$250 + shipping on e-bay
 - DVB-T model HV200E standalone (with MPEG-2 and H.264) \$658 on e-bay
- BATC DTX1 exciter with MPEG-2 encoder
 - DVB-S "standalone" model DTX1 about US\$590 + shipping(?) on BATC shop

DATV Receivers – Ham-designed DVB-S/DVB-S2 Receiver and DATV Analyzer

- MiniTiouner Low Symbol Rate designed by Jean Pierre Courjaud F6DZP
- Allows Reduced-Bandwidth DATV (RB-DATV) for small BW & more signal robustness with reasonable reduction in Frame-Rate
- S/N (C/N) improves 3 dB every time receiver RF bandwidth is cut in half

DATV Receivers – Ham-designed DVB-S/DVB-S2 Receiver and DATV Analyzer

MiniTiouner can not only full-screen-display the received DATV video, but is a powerful analyzer of DVB-S and DVB-S2 signals in the "Expert Mode".

DATV Receivers - Low Symbol Rates were a blocker

DVB-S (QPSK) with H.264					
S/R	H.264 Video	Audio	Resolution	Frames per Sec	FEC
250 KS/sec	300 Kbps	32 Kbps (MPEG1)	352x288 (SD)	18 or 20 fps	7/8
125 KS/sec	110 Kbps	32 Kbps (MPEG1)	320x240 (SD)	12 or 15 fps	7/8
400 KS/sec	360 Kbps	192 Kbps (AC3)	1920x1080 (HD)	??	7/8

- MiniTiouner Low Symbol Rate testing by Jean Pierre Courjaud F6DZP
- Commercial Receivers could not receive SR less than about 1500 KS/sec
- S/N (C/N) improves 3 dB every time receiver RF bandwidth is cut in half

Goals of the DATV-Express Project

- Significantly reduce price of Digital-ATV transmitters
- Provide Plug-and-Play hardware board to minimize home construction.
- Provide open platform for future DATV development
- Help educate community about new technologies
- Get more DATV stations on-air
- Encourage wider audience to get ham licensed
- Byproduct can be Software Defined Transmitter from 70 – 2450 MHz ham bands with a B/W of up to 10 MHz

The DATV-Express Project Team

- Charles Brain
- Ken Konechy
- Art Towslee
- Tom Gould

- G4GUO Ferring, England
- W6HHC Orange, CA, USA
- WA8RMC Columbus, OH, USA
- WB6P Portland, OR, USA

DATV-Express board internal block diagram

DATV-Express hardware board

DATV-Express DATV-Express System Specs

- DVB-S protocol is tested and released
- All IQ modulations fully tested
- Frequency Range:

70-2450 MHz (Modulator chip specification)

- Symbol-Rate:
 - Adjustable: 125 Ksymb/sec to 5 MSymb/second
- Forward Error Correction is selectable
- RF output ~ 1-20 mW buffered (SMA connector)
- USB Webcam or Video Capture card for NTSC/PAL
- PC Operating System first Ubuntu-32/64-bit
 - Then was quadcore-ARM w/ Libuntu,
 - Then was Windows10 -32/64-bit

ORANC

Est. 1933

Barefoot board RF output – has 47 configurable levels of RF output

DATV-Express capable of other DATV protocols used by hams

Testing DVB-T (2K mode) protocol at 2 MHz bandwidth on 437 MHz (using 4096-point iFFT math - with NO alias spurs)

GNU Radio with DATV-Express

- Alex OZ9AEC has developed gnuradio "sink" module for DATV-Express – (see Github URL at end)
- Ron W6RZ has adapted gnuradio to run DVB-S2 32APSK
- W6RZ uses DATV-Express DVB-S2 code and tested with BladeRF & Novra S300V DVB-S2 STB at up to 10 MSym/s.

Raspberry PI

- Raspberry PI 3 has quad-core-ARM at 700 MHz
- Raspberry PI 3 typically uses Raspbian Jesse Lite OS
- Originally designed for education market
- Raspberry-Pi-3 is used by Portsdown Project in Europe
- Portsdown Project can use either Portsdown modulator brd or the DATV-Express board as modulator

Raspberry PI – DVB-S Portsdown Project

Portsdown Project using RPi-3 / RpiDATV SW / DATV-Express modulator

Raspberry PI – DVB-S Portsdown Project

Portsdown Project using RPi-3 / RpiDATV SW / DATV-Express modulator

Conclusion and Plans

- DATV-Express Ubuntu 32/64-bit Code for PC is finished
- DATV-Express Windows10 Code for PC is finished
- Always looking for volunteers to help with software
- Focus now is now porting to LimeSDR hardware board (bigger FPGA & hardware for both Transmitting and Receiving)
- Source files are available (Software, FPGA coding, gerbers, etc.)
- Beginnings of source code repository at https://github.com/G4GUO/datvexpress_gui.git

British ATV Club - Digital Forum

www.BATC.org.UK/forum/

- CQ-DATV online (free monthly) e-magazine (ePub and PDF format) www.CQ-DATV.mobi
- OCARC library of newsletter DATV articles
 www.W6ZE.org/DATV/
- TAPR Digital Communications Conference proceedings (free downloads)
 www.TAPR.org/pub_dcc.html
- Yahoo Group for Digital ATV

http://groups.yahoo.com/group/DigitalATV/

• DATV-Express project website

www.DATV-Express.com

- HiDes (Taiwan) DVB-T D-ATV (Boards and standalone) www.HiDes.com.tw/product_cg74469_eng.html
- Portsdown Project for DATV (RPi3-based BATC project for DVB-S) http://batc.org.uk/forum/viewforum.php?f=103
- SR-Systems (Germany) D-ATV components(Boards)

www.SR-systems.de and www.D-ATV.org

