

2014 ARRL Convention San Diego

Recent Advances in Digital-ATV

by

Ken Konechy W6HHC W6HHC @ARRL.net

The Presentation Author....

Ken W6HHC

Digital-ATV technology allows Video Quality to exceed analog-ATV

Comparison of analog video and an DATV video using the same antennas with weak sigs

Status of Digital-ATV Today

- DATV Video Quality can exceed analog ATV
- Very few hams transmit DATV in USA today
- European DATV is very active and growing
- Australia/New Zealand have lots of DATV activity
- Currently Digital-ATV transmitters are expensive
- US \$900 up for MPEG/DVB-S Encoder/Transmitters
- DATV Transmitter is cost barrier for most in USA

Block Diagram of DATV Station

Typical System Block Diagram for DVB-S DATV Station

Different Protocols used for DATV

- DVB-S (satellite based)
- DVB-S2 (satellite for HDTV)
- DVB-T (terrestrial reception)
- ATSC (commercial terrestrial reception in US)
- ITU-T_J.83-Annex B (US Canada cableTV)

DVB-S Protocol used for DATV

- DVB-S is used for commercial satellite downlinks
- DVB-S was designed for commercial SD-DTV
- Protocol allows only QPSK Digital modulation
- Protocol typically calls for MPEG-2 encoding
- RF bandwidth is variable = 1.33 x Symbol-Rate
- very widely used by hams

DVB-S2 Protocol used for DATV

- DVB-S2 used for commercial satellite downlinks
- DVB-S2 was designed for commercial HD-DTV
- Protocol allows following digital modulations:
 - QPSK (2-bits/symbol)
 - 8PSK (3-bits/symbol)
 - 16APSK (4-bits/symbol)
 - 32APSK (5-bits/symbol)
- Protocol typically calls for MPEG-4 encoding
- RF bandwidth is variable = 1.2 x Symbol-Rate
- There are licensing issues for ham radio usage

DVB-T Protocol used for DATV

- DVB-T is used for EU commercial TV reception
- DVB-T was designed for commercial SD-DTV
- COFDM protocol allows these digital modulations:
 - QPSK (2-bits/symbol)
 - QAM-16 (4-bits/symbol)
 - QAM-64 (6-bits/symbol)
- Protocol typically calls for MPEG-2 encoding
- RF bandwidth can be 2, 3, 4, 6, 7, or 8 MHz
- increasing usage by hams (repeater downlink)

ATSC Protocol used for DATV

- ATSC is used for US commercial TV reception
- ATSC was designed for commercial HD-DTV
- Protocol allows only one digital modulation:
 - 8-VSB (3-bits/symbol)
- Protocol typically calls for MPEG-2 video encoding and Dolby (AC3) sound encoding
- RF bandwidth fixed at 8 MHz
- Dolby licensing issues for ham radio usage
- no current active ham experiments

ITU-T_J.83-Annex B Protocol used for DATV

- ITU-T_J.83-B is used for US/Canada cableTV
- CableTV is designed strong signals / low noise
- "QAM" Protocol allows these digital modulations:
 - QAM-64 (6-bits/symbol)
 - QAM-256 (8-bits/symbol)
- Protocol typically calls for MPEG-2 encoding
- Hams liked using MPEG-4 for HDTV
- RF bandwidth typically 6 MHz (TV channels)
- Most ham usage for DATV has been abandoned

RF Exciters for ham DATV

- SR-Systems MiniMod exciter + MPEG-2 encoder
 - DVB-S, DVB-T about \$875 as received in USA
 - DVB-S2 and ATSC costs additional...also H.264 encoder was \$900 additional
- BATC DigiLite exciter + Hauppauge encoder + PC
 - DVB-S SMT kit form (blank PCB and programmed PIC available from BATC)
- BATC DTX1 exciter with MPEG-2 encoder
 - DVB-S about \$782 + shipping + currency fee as received in USA
- DATV-Express exciter + Hauppauge encoder + PC
 - DVB-S \$300 + Hauppauge encoder + shipping
 - DVB-T (extra bonus 2 MHz bandwidth) \$300 + Hauppauge encoder + shipping

RF Exciters for ham DATV – cont'd

- HiDes exciter with MPEG-2 encoder + PC
 - DVB-T model UT100B about \$275 + shipping on e-bay
 - DVB-T model HV200E standalone (with MPEG-2 and H.264) \$658 on e-bay
- Drake exciter with MPEG-2 and H.264 encoder
 - ITU-T_J.83-B model DSE-24 was \$1750 + shipping (clearance price available)
- Thor exciter with MPEG-2 and H.264 encoder
 - ITU-T_J.83-B HDMI QAM IP Modulator \$1950 + shipping

DATV Receivers - now Low Symbol Rates are roadblocks

DVB-S (QPSK) with H.264					
Symbol-Rate	H.264 Video	Audio	Resolution	(Video Capture) Frames per Sec	FEC
250 KS/sec	300 Kbps	32 Kbps (MPEG1)	352x288 (SD)	18 or 20 fps	7/8
125 KS/sec	110 Kbps	32 Kbps (MPEG1)	320x240 (SD)	12 or 15 fps	7/8
400 KS/sec (HD test-1)		192 Kbps (AC3)	1920x1080 (HD)	3 fps??	7/8
125 KS/sec (HD test-2)	110 Kbps	32 Kbps (MPEG1)	1920x1080 (HD)	1 fps	7/8

- Recent Low Symbol Rate testing results by Jean Pierre Courjaud F6DZP
- Commercial Receivers are now the research target for "low SR efforts"

Goals of the DATV-Express Project

- Significantly reduce price of Digital-ATV transmitters
- Provide Plug-and-Play hardware board to minimize home construction.
- Provide open platform for future DATV development
- Help educate community about new technologies
- Get more DATV stations on-air
- Encourage wider audience to get ham licensed
- Byproduct can be Software Defined Transmitter from 70 – 2450 MHz ham bands with a B/W of up to 10 MHz

The DATV-Express Project Team

Charles Brain - G4GUO Ferring, England

• Ken Konechy - W6HHC Orange, CA, USA

Art Towslee - WA8RMC Columbus, OH, USA

• Tom Gould - WB6P Portland, OR, USA

DATV-Express board internal block diagram

Block Diagram for DATV-Express Hardware Board

DATV-Express hardware board

DATV-Express System Specs

- DVB-S protocol is tested and released
- All IQ modulations (QPSK modulation was tested)
- Frequency Range:

70–2450 MHz (Modulator chip specification)

- Symbol-Rate:
 - Adjustable: 1 to 5 MSymb/second
- Forward Error Correction is selectable
- RF output ~ 1-20 mW buffered (SMA connector)
- USB Video Capture card for NTSC or PAL
- Initially designed for one video stream
- PC Operating System first Ubuntu-32/64-bit
 - then quadcore-ARM ODROID U3 w/ Libuntu

1st DVB-S Transmission on First prototype

AMPLEUR RADIO Est. 1933

Clean DVB-S 1.2 GHz spectrum

Barefoot board RF output – has 47 configurable levels of RF output

COUNTY BOY DO AMPRICUR RADIO

DATV-Express capable of other DATV protocols used by hams

Testing DVB-T (2K mode) protocol at 2 MHz bandwidth on 437 MHz (using 4096-point iFFT math - with NO alias spurs)

AMPARUR RADIO

DATV-Express capable of other DATV protocols used by hams – cont'd

Testing constellation for 16APSK digital modulation for DVB-S2 protocol

SDR allows Lower-Side-Band for example

Unsuppressed carrier is down 60 dB

Simple DATV-Express User Interface

Software User Interface uses Qt4 (screen is configured for DVB-S Protocol)

GNU Radio with DATV-Express

- Alex OZ9AEC has developed gnuradio "sink" module for DATV-Express – (see Github URL at end)
- Ron W6RZ has adapted gnuradio to run DVB-S2 32APSK
- W6RZ uses DATV-Express DVB-S2 code and tested with BladeRF & Novra S300V DVB-S2 STB at up to 10 MSym/s.

Current Project Status on PC

- DATV-Express production board released in Feb 2014
 - Order at www.DATV-Express.com (PayPal)
 - Order at BATC Online Shop https://BATC.org.uk/shop/
- DVB-S completed and stable
- As extra bonus, have tested board to transmit DVB-T 2K mode, however cannot guarantee performance
- DVB-S2 tested, but there are licensing issues
- Next development phase to eliminate bulky PC

Go More Portable than bulky PC or Notebook

- Reduce Micro-PC load by using more FPGA functions
- Maybe Raspberry PI?
- or...RikoMagic MK802iv ?
- or...Hardkernel ODROID U3 ?

Raspberry PI

- Raspberry PI has singlecore-ARM at 700 MHz
- Raspberry PI typically uses Raspbian OS
- Originally designed for education market
- Raspberry PI is seriously under-powered for our app
- Raspbian source code repository is INCOMPLETE
 CAN NOT re-compile kernel

RikoMagic MK802iv

- MK802iv has quadcore-ARM at 1.4 GHz
- PicUntu OS is light-weight Ubuntu
- MK802iv as option to create "smart TV's" for internet
- PicUntu source code repository is INCOMPLETE CAN NOT re-compile kernel
- Kernel does not use SMP to balance load on four cores

RikoMagic MK802iv

Hardkernel ODROID U3

- ODROID U3 has quadcore-ARM at 1.7 GHz
- Comes with Lubuntu 12.4 LTS (LDE Desktop)
- Single-board-computer designed for software developers
- Has very active software community for support
- Has complete source repository to re-compile kernel
- Charles G4GUO explains that once DATV-Express project is satisfied with release for ARM...it should work OK with almost any ARM product

Hardkernel ODROID U3 "micro-PC"

Hardkernel ODROID U3

Planned System Block Diagram for DATV-Express DVB-S with ODROID U3

Conclusion and Plans

- Ubuntu 32/64-bit Code for PC is finished
- We need volunteers to help with software
- G4GUO reports "have had a few genuine offers of help but the problem is that those with the time don't have the experience and those with the experience don't have time."
- Focus now is for replacing bulky PC with "ARM Micro-PC"
- Source files will be available (Software, FPGA coding, gerbers, etc.)
- DATV

Beginnings of source code repository at https://github.com/G4GUO/datvexpress_gui.git

• British ATV Club - Digital Forum

www.BATC.org.UK/forum/

CQ-DATV online (free monthly) e-magazine (ePub format)

www.CQ-DATV.mobi

OCARC library of newsletter DATV articles

www.W6ZE.org/DATV/

• TAPR Digital Communications Conference proceedings (free downloads)

www.TAPR.org/pub_dcc.html

Yahoo Group for Digital ATV

http://groups.yahoo.com/group/DigitalATV/

DATV-Express project website

www.DATV-Express.com

DigiLite Project for DATV (derivative of the "Poor Man's DATV")

www.G8AJN.tv/dlindex.html

Hardkernel (Korea) for ODROID model U3 ARM-based "micro-PC"

www.hardkernel.com

HiDes (Taiwan) DVB-T D-ATV (Boards – and standalone)

www.HiDes.com.tw/product_cg74469_eng.html

Alex OZ9AEC GNURADIO "sink" module for DATV-Express

https://github.com/csete/gr-datvexpress

SR-Systems (Germany) D-ATV components(Boards)

www.SR-systems.de and www.D-ATV.org

